XML Models for Books

It’s all about whatcha got and whatcha wanna do with it.

Bill Kasdorf
Vice President, Apex Content Solutions
General Editor, *The Columbia Guide to Digital Publishing*
We all know what book pages look like . . .
GENETIC COUNSELING
AND TESTING

Implications for Clinical Practice

Karen A. Johnson, MS, and Jill D. Brensinger, MS

Genetic counseling is a communication process. It is intended to aid individuals and families in interpreting and dealing with information about a genetic disorder that has been diagnosed or is suspected within the family. There are many components to this genetic counseling process, which not only incorporates medical facts and education about a condition but also includes supportive counseling to help a patient deal with the sometimes unexpected finding that the disorder in the family may be inherited. Learning of this risk may, for some individuals, create psychological and emotional barriers that must be addressed.

GENETIC COUNSELORS

Genetic counselors are currently one of the primary groups of health care professionals who provide genetic counseling services to patients. They are specifically trained to take into account a patient’s education and experiences, to communicate complicated medical concepts on an appropriate level, to consider the individual’s social, religious, and cultural background when presenting testing and management choices, and to encourage patients to verbalize their feelings about the condition and the available options. Genetic counselors are also trained to provide anticipatory guidance, in which the counselor helps the patient consider several
TWO

Four Hens and a Slogan

If we look up, we can concentrate on the future. If we look down, we can concentrate on money. But only by concentrating on money can we concentrate on the future.

Yu Zuomin, 1986

The ironic fate of the fourth hen, led by the former mad scientist from the pig lot, Zhang Yanjun, was that it became the most innovative and technologically advanced of the four. Official factories were set up to produce zinc-coated steel pipes, copper bar and wire, and angle steel. (See tables 1 and 2.)

QUESTION: What’s the best way to kill someone in Daqiu without getting caught?

ANSWER: Bash in their head with a brick. No judge will ever believe that a person from Daqiu has enough money to own a brick. You are sure to be set free.

The Daqiu economic miracle of the 1980s was a textbook example of the growth of rural industry in reform China. The strategies used by the village were born of the changed political and economic circumstances of the era, which allowed places like Daqiu to organize and produce like never before. As Yu was fond of saying, “Anyone who visits
Cyberstars

Ballmer Is to Gates What Barrett Is to Grove

Gates Passes the Ball to Ballmer: Billionaire Bill (left) enjoys a “high bandwidth” relationship with fellow billionaire, co-leader Steve. (Gamma Liaison)

Cyberstars: Intel chairman Andy Grove is right behind heir apparent Craig Barrett. (AP Wide World Photo)
Vladimir Nabokov
1899–1977

“Literature was not born the day when a boy crying ‘wolf, wolf’ came running out of the Neanderthal valley with a big gray wolf at his heels; literature was born on the day when a boy came crying ‘wolf, wolf’ and there was no wolf behind him.”

“Style and structure are the essence of a book; great ideas are hogwash.”

V. S. Naipaul
1932–

“I am the kind of writer that people think other people are reading.”

Napoleon I
1769–1821

“[As a young man] I lived alone like a hermit, in a little room with my books—then my only friends. What strict economy it required even in the necessaries of life before I could allow myself the pleasure of purchasing them! When I had managed to save up two crowns by dint of stern self-denial, I wended my way to the bookseller’s as pleased as a child, and I examined his shelves long and anxiously before my purse would allow me to gratify my desires.”

“God, how stupid literary men are!”

“Since the discovery of printing, knowledge has been called to power, and power has been used to make knowledge a slave.”
safely be said that these works accomplished more in the way of popularizing the interest in lepidoptera among young Americans than any other contemporary publications.

In the field of paleontology Holland actively sponsored explorations of fossiliferous regions of the West in the interests of the Carnegie Museum. He aided in the discovery of several giant dinosaurs, including the Diplodocus carnegiei and the Apatosaurus lolitiseæ, the latter of which he named in honor of the wife of the founder of the museum. An interesting paper which developed from his study of the dinosaur was “The Osteology of the Diplodocus Marsh” (Memoirs of the Carnegie Museum, vol. II, no. 6, 1906). In fulfilment of a wish expressed by Carnegie, Holland was instrumental in supplying several leading museums of the Old and New Worlds with replicas of the Diplodocus. He is also credited with having issued the call for the meeting that led to the formation of the American Association of Museums, and he served as president of the organization from 1907 to 1909. In his leisure hours, during his busy life, he found recreation in painting. He made his own illustrations for his books and papers and occasionally wrote articles on art subjects.

Holland was married, on Jan. 23, 1879, to Carrie T. Moorhead, by whom he had two sons, Moorhead Benezet and Francis Raymond. He died in Pittsburgh, following a stroke, in his eighty-fifth year. After his death his extensive entomological collections, together with his library, were acquired by the Carnegie Institute in compliance with the conditions of the will stipulating the setting aside of a certain fund for the development of the entomological section.

HOLLERITH, HERMAN (Feb. 29, 1860–Nov. 17, 1929), inventor of tabulating machines, was born in Buffalo, N. Y., the son of George and Franciska (Brunn) Hollerith. After preliminary schooling he attended the School of Mines of Columbia University and was graduated in 1879. Immediately thereafter he became an assistant to his teacher, William Petit Trowbridge [q.v.], in the Census of 1880. He worked on the statistics of manufacturers and prepared an article, “Report on the Statistics of Steam- and Water-Power Used in the Manufacture of Iron and Steel,” for the Report on Power and Machinery Employed in Manufactures (Census Office, Department of the Interior, 1888). His work on the census brought him into contact with Dr. John Shaw Billings [q.v.], from whom came the suggestion of Hollerith’s main invention. In a letter to a friend written nearly forty years later he described the origin of the idea: “One evening at Dr. B’s tea table he said to me, ‘There ought to be a machine for doing the purely mechanical work of tabulating population and similar statistics.’” Hollerith thought the problem could be solved and later offered Billings a share in the project.

In 1882 he went to the Massachusetts Institute of Technology, as instructor in mechanical engineering. He disliked teaching, however, and after a year moved to St. Louis, Mo., where he experimented on electro-magnetically operated air-brakes and other types of brakes for railroads. From 1884 to 1890 he was attached to the Patent Office in Washington, D. C. During these years he worked on the problem of perfecting mechanically aids in tabulating statistical information. By the time the Census of 1890 was to be taken he had invented machines that would record statistical items, by a system of punched holes in a non-conducting material, and would also count those items by means of an electric current passed through the holes identically placed. The system was given trial in tabulating mortality statistics in Baltimore, and in compiling similar data in New Jersey and New York City. In competition with two alternative methods of tabulation, it was chosen for use in compiling the Census of 1890. It did a sample piece of work in less than half the time required by the other systems, and the commission estimated that in dealing with the returns expected at the approaching census the new machine would reduce the labor days by more than two-thirds. Subsequently the machines were improved by the addition of a mechanical feeding device. In 1890 the Franklin Institute of Philadelphia, reporting that Hollerith had made the outstanding invention of the year, gave him its highest award, the Elliott Cresson medal.

The Hollerith machines were used in 1891 in recording the census returns in Canada,
was no effort to recognize the passing of one of the great minds of the early 20th century. In fact, only 12 people attended Hilbert's funeral.

Hollerith, Herman

February 29, 1860–November 17, 1929 ● Inventor

Herman, Hollerith, inventor of tabulating machines, was born in Buffalo, N. Y., the son of George and Fran-
ciska (Brunn) Hollerith. After preliminary schooling he attended the School of Mines of Columbia University and was graduated in 1879. Immediately thereafter he became an assistant to his teacher, William Petit Trowbridge [q.v.], in the Census of 1880. He worked on the statistics of manufacturers and prepared an article, “Report on the Statistics of Steam- and Water-Power Used in the Manufacture of Iron and Steel,” for the Report on Power and Machinery Employed in Manufactures (Census Office, Department of the Interior, 1888). His work on the census brought him into contact with Dr. John Shaw Billings [q.v.], from whom came the suggestion of Hollerith’s main invention. In a letter to a friend written nearly forty years later he described the origin of the idea: “One evening at Dr. B’s tea table he said to me, ‘There ought to be a machine for doing the purely mechanical work of tabulating population and similar statistics.’” Hollerith thought the problem could be solved and later offered Billings a share in the project.

In 1882 he went to the Massachusetts Institute of Technology, as instructor in mechanical engineering. He disliked teaching, however, and after a year moved to St. Louis, Mo., where he experimented on electro-magnetically operated air-brakes and other types of brakes for railroads. From 1884 to 1890 he was attached to the Patent Office in Washington, D. C. During these
Hollerith, Herman, (Feb. 29, 1860 – Nov. 17, 1929), inventor of tabulating machines, was born in Buffalo, N. Y., the son of George and Francisca (Brunn) Hollerith. After preliminary schooling he attended the School of Mines of Columbia University and was graduated in 1879. Immediately thereafter he became an assistant to his teacher, William Petit Trowbridge [q. v.], in the Census of 1880. He worked on the statistics of manufacturers and prepared an article, "Report on the Statistics of Steam- and Water-Power Used in the Manufacture of Iron and Steel," for the Report on Power and Machinery Employed in Manufactures (Census Office, Department of the Interior, 1888). His work on the census brought him into contact with Dr. John Shaw Billings [q. v.], from whom came the suggestion of Hollerith's main invention. In a letter to a friend written nearly forty years later he described the origin of the idea: "One evening at Dr. B’s tea table he said to me, 'There ought to be a machine for doing the purely mechanical work of tabulating population and similar statistics.' " Hollerith thought the problem could be solved and later offered Billings a share in the project.

In 1882 he went to the Massachusetts Institute of Technology, as instructor in mechanical engineering. He disliked teaching, however, and after a year moved to St. Louis, Mo., where he experimented on electromagnetically operated air-brakes and other types of brakes for railroads. From 1884 to 1890 he was attached to the Patent Office in Washington, D. C. During these years he worked on the problem of perfecting mechanical aids in tabulating statistical information. By the time the Census of 1890 was to be taken he had invented machines that would record statistical items, by a system of punched holes in a non-conducting material, and would also count those items by means of an electric current passed through the holes identically placed. The system was given trial in tabulating mortality statistics in Baltimore, and in compiling similar data in New Jersey and New York City. In competition with two alternative methods of tabulation, it was chosen for use in compiling the Census of 1890. It did a sample piece of work in less than half the time required by the other systems, and the commission estimated that in dealing with the returns expected at the approaching census the new machine would reduce the labor days by more than two-thirds. Subsequently the machines were improved by the addition of a mechanical feeding device. In 1890 the Franklin Institute of Philadelphia, reporting that Hollerith had made the outstanding invention of the year, gave him its highest award, the Elliott Cresson medal.

The Hollerith machines were used in 1891 in recording the census returns in Canada, Norway, and Austria. Although they revolutionized statistical technique, American scholars gave little attention to them at the outset, probably because statistical interpretation had not been carried as far in the United States as elsewhere. But in Europe technical articles about their value appeared in England, France, Germany, Austria, and Italy. Hollerith attended the Berne session of the International Statistical Institute in 1895 and commented upon a paper by an Austrian member. Between 1890 and 1900 the machines were successfully adapted to handle types of mass enquiries in which addition was an element, and thus they could be used in tabulating railroad freight statistics and the data assembled in

CURRENTLY POLITICAL AND SOCIAL FORCES are contributing to the increased demand for drug treatment, just as these same forces pushed the growth of treatment of heroin abuse. This recent trend reaffirms the importance of social and political factors in how U.S. society deals with alcohol and other drugs use.

In 1986 the surge in demand for drug treatment, particularly in the residential or inpatient setting, arose from two major sources: crack and AIDS. These worked in a political climate that was strongly in favor of eradicating drugs and drug abuse.

As you saw in Chapter 6, crack is the highly addictive, cheaper form of cocaine. People start using it are quickly hooked on it, and in the mid-1980s people who start using it are quickly hooked on it, again the media addicts looking for needles. These worked in a political climate that was strongly in favor of eradicating drugs and drug abuse.

Currently political and social forces are contributing to the increased demand for drug treatment, just as these same forces pushed the growth of treatment of heroin abuse. This recent trend reaffirms the importance of social and political factors in how U.S. society deals with alcohol and other drugs use.

The right of the federal government and other public and private employers to conduct urinalysis.

Some proposed legal penalties related to selling or using drugs—requirement of life sentences to drug dealers who are convicted twice of selling drugs to teenagers.

The uproar resulting from the revelation that David Ginsberg, a 1987 Supreme Court nominee, smoked marijuana.

Currently political and social forces are contributing to the increased demand for drug treatment, just as these same forces pushed the growth of treatment of heroin abuse. This recent trend reaffirms the importance of social and political factors in how U.S. society deals with alcohol and other drugs use.

Side effects of anabolic steroids Then in 1977, two independent laboratories reported the discovery of binding sites for benzodiazepines and it was subsequently shown that although specific to benzodiazepines, these receptors are part of what is now called the GABA-benzodiazepine receptor.

1. By origin—An example within this system is drugs that come from plants, such as the opiates, which are derived from the opium poppy. The “pure” (nonsynthetic) opiates include compounds such as morphine.
2. By action, according to similarity of drug effects for example, marijuana and atropine both increase heart rate.
3. By therapeutic use, or according to similarity in how a drug is used to treat or modify something in the body.
TABLE 16-2 Summary of five major categories of models of the causes of substance-use disorders, and their implications for treatment

<table>
<thead>
<tr>
<th>Model</th>
<th>Cause(s)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moral</td>
<td>The making of personal choices to use alcohol and drugs in a harmful way, when other choices could have been made.</td>
<td>Punish legally or intervene spiritually.</td>
</tr>
<tr>
<td>American Disease</td>
<td>Substance-use disorders are progressive, irreversible diseases that are the products of a mix of physical and spiritual causes.</td>
<td>Identify those with the disease, confront them to abstain from drugs and alcohol.</td>
</tr>
<tr>
<td>Biological</td>
<td>Genetic or physiological processes.</td>
<td>Advise people at risk for problems of their risk status. Counsel those at risk to avoid alcohol and drugs entirely.</td>
</tr>
</tbody>
</table>

Another exciting discovery has been the development of new drugs that are antagonistic at the benzodiazepine receptor. Depression is one of the most common psychiatric disorders in the United States. Depression often is classified as one of two major types—endogenous and exogenous. Lithium is the major drug used in treating the mood disorders of mania and manic-depressive illness. Lithium is the only psychiatric drug that is an effective prophylaxis against disease recurrence.1

It is different to provide a complete definition of anxiety, given the wide array of phenomena it encompasses. Then in 1977, two independent laboratories reported the discovery of binding sites for benzodiazepines and it was subsequently shown that although specific to benzodiazepines, these receptors are part of what is now called the GABA-benzodiazepine receptor. The “pure” (nonsynthetic) opiates include compounds such as morphine. By action, according to similarity of drug effects for example, marijuana and atropine both increase heart rate.

Figure 16-5 Selection of human brain showing inside of left hemisphere

relapse
A term from physical disease, relapse means return to a previous state of illness from one of health. As applied to smoking, it means the smoker resumes smoking after having abstained for some amount of time.

1In addition, cross-tolerance occurs between drugs. They also potentiate one another. In fact benzodiazepines are commonly used to withdraw alcoholics from alcohol. Thus, substantial evidence indicates a common mechanism of action for depressant drugs (Breese, Frye, Vogel, 1983).
3. Press **Page down** to move forward one slide. Of course if you are already on the last slide, this action has no effect.
4. Press **Page up** to move back one slide.
5. Press **Enter** to add a new line. Your cursor moves to another line or bullet point, depending on the slide’s layout.
6. Press **Tab** or use the **Demote** button. This demotes the bullet and the text that you type will be indented.
7. Press **Shift+Tab** or use the **Promote** button. This promotes the line one level higher than the preceding line.

Result: You have just added text to your slide in the slide pane. Both the text and any formatting that is present are visible. To correct any mistakes, press the **Backspace** or **Delete** keys. Chapter 3, “Edit Text,” provides more sophisticated ways to edit your text.

TIPS FROM A PRO: As you add text to your slides, try to use parallel construction. For example, use a series of verb phrases or a list of nouns. Just don’t mix them together. Look at the examples shown in Figure 2.4.

ADD TEXT IN NOTES PANE

Core Objective: Add speaker notes

How: Click in the notes pane to type comments. Notice that as you type previous lines of text are not visible. If you want to see a larger section of your notes, just resize the pane.

Result: You now have notes at the bottom of your slide to help you remember when you want to give the audience handouts, when to add that relevant anecdote, or when to ask a question of the audience (Figure 2.5). Your listeners cannot see them; they are only to help you. You learn how to print your notes in Chapter 8, “Print and Deliver.”

Figure 2.4 Parallel grammar

Figure 2.5 Normal view with notes in the notes pane

<table>
<thead>
<tr>
<th>Not Parallel</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Parallel</td>
<td>Parallel</td>
</tr>
<tr>
<td>Goals for 2001</td>
<td>Goals for 2001</td>
</tr>
<tr>
<td>• Increase R&D sending by 50%</td>
<td>• Increase R&D sending by 50%</td>
</tr>
<tr>
<td>• Compensation program redesign</td>
<td>• Redesign compensation program</td>
</tr>
<tr>
<td>• Decrease waste by 25%</td>
<td>• Decrease waste by 25%</td>
</tr>
<tr>
<td>• Unprofitable unit divestiture</td>
<td>• Divest unprofitable unit</td>
</tr>
</tbody>
</table>
TIPS FROM A PRO: If you want to make the text in any of the panes appear larger, use the Zoom button on the Standard toolbar. Click in the pane that you want to enlarge, click the drop-down arrow next to the button, and select the desired percentage.

Task 3: Add Speaker Notes

Core Objective: Add speaker notes

What: In Task 2 you learned how to enter notes in the notes pane, but PowerPoint offers two additional methods for entering speaker notes.

Why: More options means greater flexibility. You aren’t limited to one view to enter notes—add them in every view!

Enter Notes in Slide Sorter View

How: Here you don’t need to page from slide to slide; you can enter notes for all your slides in one convenient location.

1. Use the mouse to select the slide.
2. Click the **Speaker Notes** button.
3. Enter your notes in the Speaker Notes dialog box, as shown in Figure 2.6.
4. Repeat steps 1-3 to type notes for additional slides.

Result: The notes appear in the space at the bottom of the slide just as those you entered in the notes pane but you can’t see them unless you go to one of the other PowerPoint views.

![Figure 2.6
Entering speaker notes in Slide Sorter view](image-url)
There’s a reason why DTDs and schemas are called “models.”
Some common book “models”

- Scholarly monograph
- Textbook
- Reference book (but encyclopedia ≠ dictionary)
- Directory
- Catalog
- Technical manual (but programming manual ≠ auto repair manual ≠ Boeing 737 documentation)
- Trade book (but cookbook ≠ coffeetable book)
Some common book “models”

- Scholarly monograph
- Textbook
- Reference book (but encyclopedia ≠ dictionary)
- Directory
- Catalog
- Technical manual (but programming manual ≠ auto repair manual ≠ B2 bomber documentation)
- Trade book (but cookbook ≠ coffee table book)

These models have different:

- Structures
- Semantics
- Purposes
- Audiences
- Type/design conventions
Here's some text at the beginning of this chapter. Let's make one more line's worth.

Level One Subhead

Here's some more text. This author's a pretty nice girl, but she doesn't have a lot to say.

Level Two Subhead

The end.
Chapter Author
Author Identification

Here’s some text at the beginning of this chapter. Let’s make one more line’s worth.

Level One Subhead

Here’s some more text. This author’s a pretty nice girl, but she doesn’t have a lot to say.

Level Two Subhead

The end.
DTDs can be strict . . .
ISO 12083

The Mother Superior of DTDs . . .
The **ISO 12083** DTD

- Brilliant, idealistic, based on theory
- Very strict and hierarchical
- Creation of one individual, Eric van Herwijnen
- Created before the Web, before XML

Most big STM journal DTDs are still 12083-based
or permissive . . .
TEI

The “Let One Thousand Flowers Bloom” DTD . . .
TEI: The Text Encoding Initiative

- Rich, expansive, accommodating
- Collaborative creation: TEI Consortium
- Created for scholarship, not publication
- Own table model (can invoke CALS or XHTML)
- Can invoke TeX or MathML for math
- Enormous resource; TEI Lite is too simplistic

Most humanities scholarship is TEI-based
<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE TEI SYSTEM "tei_all.dtd">
<!-- TEIp5\tei-p5-exemplars-0.7.xml\dtd\tei_all.dtd 2007-05-26 Release -->
<TEI>
 <teiHeader type="text">
 <fileDesc>
 <titleStmt>
 <title type="main">Chapter Title</title>
 <author>Chapter Author</author>
 </titleStmt>
 <editionStmt>
 <edition>
 <date value="2007">2007</date>
 </edition>
 </editionStmt>
 <publicationStmt>
 <distributor>
 <address>
 <addrLine>
 <name key="Pub" type="organisation">Publisher</name>
 </addrLine>
 <addrLine>Address</addrLine>
 <addrLine>
 <name type="place">Place</name>
 </addrLine>
 <addrLine>Email</addrLine>
 </address>
 </distributor>
 <idno type="demo">DEMO_Ch1</idno>
 <availability status="free">
 <p>Public domain</p>
 </availability>
 </publicationStmt>
 </teiHeader>
</TEI>
<p>Chapter in search of a book.</p>

<p><bibl>Example TEI Chapter 1. Chapter Author.</bibl></p>

<change><list>
 <item><date value="2007-06-09">June 9, 2007</date> Created initial version.</item>
</list></change>
Here's some text at the beginning of this chapter. Let's make one more line's worth.

Here's some more text. This author's a pretty nice girl, but she doesn't have a lot to say.

The end.
To Moncure D. Conway,

5 May 1876

Hartford, Conn. (MS: NNC, #01332)

My Dear Conway:

Bliss says he will rush the pictures the tightest he can, & believes he can have them ready for shipment by May 14. Better call it May 30 & even then it will be the nearest he ever came to being on time with his word.

I've been playing Peter Spyk in The Loan of a Lover (I re-wrote the part, stupifying it a little more & making it unconsciously sarcastic in spots) & we made a considerable success of it. Been invited to perform in New York, but declined, of course. &n
or utilitarian . . .
DocBook

The “Crank It Out” DTD . . .
DocBook

• Common general-purpose book model
• Widely used for technical documents, manuals
• Not often used for scholarly/trade/ref/textbooks
• CALS tables (can invoke XHTML)
• Own math model (can invoke MathML)
• Vendors and tech writers familiar with DocBook

DocBook is often used in structured environments
<?xml version="1.0" encoding="us-ascii"?>

<chapter label="1">
 <chapterinfo>
 <authorgroup>
 <author>
 <firstname>Chapter</firstname>
 <surname>Author</surname>
 <affiliation>
 <shortaffil remap="ITAL">Author Identification</shortaffil>
 <jobtitle></jobtitle><orgname></orgname>
 </affiliation>
 </author>
 </authorgroup>
 </chapterinfo>
 <title>Chapter Title</title>
 <para>Here's some text at the beginning of this chapter. Let's make one more line's worth.</para>
 <sect1>
 <title>Level One Subhead</title>
 <para>Here's some more text. This author's a pretty nice girl, but she doesn't have a lot to say.</para>
 <sect2>
 <title>Level Two Subhead</title>
 <para>The end.</para>
 </sect2>
 </sect1>
</chapter>
or strike a useful balance . . .
The “Works and Plays Well Together” DTD . . .
The NLM Book DTD

- Originally created for NCBI Bookshelf
- Not based on broad study of books, as the journal models were on journals
- Has been improved, and still a work in process
- Robust metadata/semantics
- XHTML or CALS tables, MathML for math
- Appealing when mixed with NLM journal XML
Our text as NLM Book XML

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE book-part PUBLIC "-//NLM//DTD Book DTD v2.3 20070202//EN" "book.dtd">

<book-part id="bid_001" book-part-type="chapter" book-part-number="1">
 <book-part-meta>
 <title-group>
 <title>Chapter Title</title>
 </title-group>
 <contrib-group>
 <contrib contrib-type="author">
 <name><surname>Author</surname><given-names>Chapter</given-names></name>
 <aff>Author Identification</aff>
 </contrib>
 </contrib-group>
 <history>
 <date date-type="created">
 <day>9</day>
 <month>6</month>
 <year>2007</year>
 </date>
 <date date-type="updated">
 <day>9</day>
 <month>6</month>
 <year>2007</year>
 </date>
 </history>
 </book-part-meta>
</book-part>

CN, CT, AU, & AFF are ONLY in the metadata

... but look how rich the metadata model is!
Here’s some text at the beginning of this chapter. Let’s make one more line’s worth.

Level One Subhead

Here’s some more text. This author’s *a pretty nice girl*, but she doesn’t have a lot to say.

Level Two Subhead

The end.
or serve a particular purpose . . .
DTBook

The most important DTD people have never heard of . . .
The DTBook DTD

- Part of DAISY/NISO “Digital Talking Book” standard
- Now part of IDPF’s new .epub format for e-books
- First priority: structure—Enables access, navigation, subsetting; accommodates flat or nested structures
- The degree of markup is not mandated; markup needed for print is DAISY’s recommended minimum
- XHTML tables, images and alt attribute for math
The **DTBook DTD**

NIMAS: US National File Format for Education

- Implementation of DTBook for US education
- **Baseline Element Set** (min. requirement, nested): publishers must supply this XML (+ PDF for visual reference, + package file)
- **Optional Element Set** (rest of DTBook set)
- “Guidelines for Use” follow DAISY, but stricter
Our text as NIMAS-compliant DTBook

DTBook allows both flat and nested (numbered or recursive) structures

NIMAS wants explicit structure
The new .epub standard from IDPF

- Successor to OEB (Open eBook) standard
- **OPS 2.0** (Open Publication Structure): Text markup standard (XHTML + DTBook)
- **OPF 2.0** (Open Packaging Format): How the components of a digital book are related
- **OCF 1.0** (Open Container Format): How to encapsulate an .epub w/ optional files
or, for something completely different . . .
DITA

The “Slice & Dice” DTD . . .
DITA

- DITA = Darwin Information Typing Architecture
- Designed for modular information
- Content is created in “topics,” not documents
- Topics are assembled & reassembled by “maps”
- Becoming the new standard for tech docs

DITA is ideal for granular, modular information—updating a topic updates all docs it’s used in
not to mention (okay, I will) models used in books . . .
Models used as **components** in other models

- MathML for math equations
- CALS/Oasis table model
- SVG—Scalable Vector Graphics
- XHTML (modular XHTML2 is being developed)
- Dublin Core (basic bibliographic metadata)
- ONIX (for marketing/distribution & other info)
- OAI-PMH—Open Archives Initiative Protocol for Metadata Harvesting (no, not just for free content!)

It's very nice not to have to reinvent these wheels!
XML Models for Books

[Optimist says:] What a wealth of options!
XML Models for Books

[Optimist says:] What a wealth of options!

[Pessimist says:] Clear as mud!
XML Models for Books

It’s not XML’s fault this is complicated.

Books are messy.
Thanks!

Bill Kasdorf

Vice President, Apex Content Solutions

bkasdorf@apexcovantage.com

+1 734 904 6252